Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, which can potentially be confused for or mask gravitational-wave signals. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine-learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to the architecture's simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Using data from previous observing runs, we evaluate different fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. Our new O4 classifier shows improved performance, and will enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena.more » « lessFree, publicly-accessible full text available July 29, 2026
-
Abstract Upcoming LIGO–Virgo–KAGRA (LVK) observing runs are expected to detect a variety of inspiralling gravitational-wave (GW) events that come from black hole and neutron star binary mergers. Detection of noninspiral GW sources is also anticipated. We report the discovery of a new class of noninspiral GW sources—the end states of massive stars—that can produce the brightest simulated stochastic GW burst signal in the LVK bands known to date, and could be detectable in LVK run A+. Some dying massive stars launch bipolar relativistic jets, which inflate a turbulent energetic bubble—cocoon—inside of the star. We simulate such a system using state-of-the-art 3D general relativistic magnetohydrodynamic simulations and show that these cocoons emit quasi-isotropic GW emission in the LVK band, ∼10–100 Hz, over a characteristic jet activity timescale ∼10–100 s. Our first-principles simulations show that jets exhibit a wobbling behavior, in which case cocoon-powered GWs might be detected already in LVK run A+, but it is more likely that these GWs will be detected by the third-generation GW detectors with an estimated rate of ∼10 events yr −1 . The detection rate drops to ∼1% of that value if all jets were to feature a traditional axisymmetric structure instead of a wobble. Accompanied by electromagnetic emission from the energetic core-collapse supernova and the cocoon, we predict that collapsars are powerful multimessenger events.more » « less
-
Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches.more » « less
-
This data set contains the individual classifications that the Gravity Spy citizen science volunteers made for glitches through 20 July 2024. Classifications made by science team members or in testing workflows have been removed as have classifications of glitches lacking a Gravity Spy identifier. See Zevin et al. (2017) for an explanation of the citizen science task and classification interface. Data about glitches with machine-learning labels are provided in an earlier data release (Glanzer et al., 2021). Final classifications combining ML and volunteer classifications are provided in Zevin et al. (2022). 22 of the classification labels match the labels used in the earlier data release, namely 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line and Whistle. One glitch class that was added to the machine-learning classification has not been added to the Zooniverse project and so does not appear in this file, namely Blip_Low_Frequency. Four classes were added to the citizen science platform but not to the machine learning model and so have only volunteer labels, namely 70HZLINE, HIGHFREQUENCYBURST, LOWFREQUENCYBLIP and PIZZICATO. The glitch class Fast_Scattering added to the machine-learning classification has an equivalent volunteer label CROWN, which is used here (Soni et al. 2021). Glitches are presented to volunteers in a succession of workflows. Workflows include glitches classified by a machine learning classifier as being likely to be in a subset of classes and offer the option to classify only those classes plus None_of_the_Above. Each level includes the classes available in lower levels. The top level does not add new classification options but includes all glitches, including those for which the machine learning model is uncertain of the class. As the classes available to the volunteers change depending on the workflow, a glitch might be classified as None_of_the_Above in a lower workflow and subsequently as a different class in a higher workflow. Workflows and available classes are shown in the table below. Workflow ID Name Number of glitch classes Glitches added 1610 Level 1 3 Blip, Whistle, None_of_the_Above 1934 Level 2 6 Koi_Fish, Power_Line, Violin_Mode 1935 Level 3 10 Chirp, Low_Frequency_Burst, No_Glitch, Scattered_Light 2360 Original level 4 22 1080Lines, 1400Ripples, Air_Compressor, Extremely_Loud, Helix, Light_Modulation, Low_Frequency_Lines, Paired_Doves, Repeating_Blips, Scratchy, Tomte, Wandering_Line 7765 New level 4 15 1080Lines, Extremely_Loud, Low_Frequency_Lines, Repeating_Blips, Scratchy 2117 Original level 5 22 No new glitch classes 7766 New level 5 27 1400Ripples, Air_Compressor, Paired_Doves, Tomte, Wandering_Line, 70HZLINE, CROWN, HIGHFREQUENCYBURST, LOWFREQUENCYBLIP, PIZZICATO 7767 Level 6 27 No new glitch classes Description of data fields Classification_id: a unique identifier for the classification. A volunteer may choose multiple classes for a glitch when classifying, in which case there will be multiple rows with the same classification_id. Subject_id: a unique identifier for the glitch being classified. This field can be used to join the classification to data about the glitch from the prior data release. User_hash: an anonymized identifier for the user making the classification or for anonymous users an identifier that can be used to track the user within a session but which may not persist across sessions. Anonymous_user: True if the classification was made by a non-logged in user. Workflow: The Gravity Spy workflow in which the classification was made. Workflow_version: The version of the workflow. Timestamp: Timestamp for the classification. Classification: Glitch class selected by the volunteer. Related datasets For machine learning classifications on all glitches in O1, O2, O3a, and O3b, please see Gravity Spy Machine Learning Classifications on Zenodo For classifications of glitches combining machine learning and volunteer classifications, please see Gravity Spy Volunteer Classifications of LIGO Glitches from Observing Runs O1, O2, O3a, and O3b. For the training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo. For detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo.more » « less
-
null (Ed.)ABSTRACT Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo have recently published the upper limit measurement of persistent directional stochastic gravitational-wave background (SGWB) based on data from their first and second observing runs. In this paper, we investigate whether a correlation exists between this maximal likelihood SGWB map and the electromagnetic (EM) tracers of matter structure in the Universe, such as galaxy number counts. The method we develop will improve the sensitivity of future searches for anisotropy in the SGWB and expand the use of SGWB anisotropy to probe the formation of structure in the Universe. In order to compute the cross-correlation, we used the spherical harmonic decomposition of SGWB in multiple frequency bands and converted them into pixel-based sky maps in healpix basis. For the EM part, we use the Sloan Digital Sky Survey alaxy catalogue and form healpix sky maps of galaxy number counts at the same angular resolution as the SGWB maps. We compute the pixel-based coherence between these SGWB and galaxy count maps. After evaluating our results in different SGWB frequency bands and in different galaxy redshift bins, we conclude that the coherence between the SGWB and galaxy number count maps is dominated by the null measurement noise in the SGWB maps, and therefore not statistically significant. We expect the results of this analysis to be significantly improved by using the more sensitive upcoming SGWB measurements based on the third observing run of Advanced LIGO and Advanced Virgo.more » « less
-
Abstract The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven characterization of such a signal will provide invaluable information about the evolution of the universe and the population of GW sources within it. We present a new, user-friendly, Python-based package for GW data analysis to search for an isotropic GWB in ground-based interferometer data. We employ cross-correlation spectra of GW detector pairs to construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the analysis to one’s own needs. We describe the individual modules that make up pygwb , following the traditional steps of stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline that combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO and Virgo observing run. We successfully recover all mock data injections and reproduce published results.more » « less
An official website of the United States government
